スポンサーサイト

上記の広告は1ヶ月以上更新のないブログに表示されています。
新しい記事を書く事で広告が消せます。

馬ノコの無駄合その2

今回は、「合駒をすぐに取らなくてもいい?」という話題です。

まずは、2010年に行われた、1手詰?コンクールの例題
1手詰?コンクール例題
73飛成、83歩、82龍、84玉、83龍、75玉、
74龍、66玉、65龍、57玉、56龍、68玉、
69龍、67玉、58龍、66玉、56龍、75玉、
65龍、84玉、74龍、93玉、73龍
で無事ループ完成
したがって、83歩が復元型無駄合になるため、
73飛成まで1手詰


1942年に図示されたという謎作品「驀進」
驀進
93飛成、85玉、84龍、76玉、75龍、67玉、66龍、58玉、68龍、47玉、
48龍、36玉、37龍、25玉、26龍、34玉、24龍、43玉、33龍、52玉、
42龍、63玉、72龍、53玉、62龍、44玉、42龍、34玉、33龍、25玉、
(略)
75龍、94玉、74龍(ここからループ開始だが、同じ感じなので略)

※謎なのはこないだ図書館で見られなかったため


どちらの作品も、ヒモつきの合駒をワンクッション入れてから拾っています。
しかし、結局持駒が増えた状態で元の局面に戻すことができるので
無駄合と判定されるということのようです。

これは本当に馬ノコの無駄合に入れていいのでしょうか?


1手詰?コンクールの方は、
「これを認めたらどうなるの?」
な作品を募集する目的なので、この仕様になっていることにはなんとなく納得できるのですが、
「驀進」の方は本当に謎です。当時はどう思われていたのでしょうか。

いずれにしても、現代では無駄っぽさは限りなく低いでしょう。


※初めてコレを目にしたときには「え?いいの?」と思っていたのですが、
 それ以前のノートに1作ありました。自分が何を考えていたのかさっぱりわかりません。


追記:
森信雄さんがこれに該当する図を出しているという情報を得たので、調べてみたところ次の図を発見しました。

『将棋世界』付録「森信雄ワールドPart2」p.80より
参考2図

 参考2図は出題しなかったが、▲2四飛△1五玉▲2七飛まで3手詰。(?)最終局面で△2四歩なら▲2五飛△1四玉▲2四飛△1五玉▲2七飛のサイクルで詰みという奇妙な問題である。
 果たして3手詰といえるかどうか、頭がクラクラしそうで辞めた。


※▲△は将棋駒形だったのですが、再現法が分かりませんでした。

似たようなループ手順を使ったことがあるのですが、当時は知りませんでした。
主張内容が違うので、たぶん別作として扱われると思いますが、どうなんでしょう……


参考文献
WFP第21号「1手詰?コンクール」:http://www.dokidoki.ne.jp/home2/takuji/WFP21.pdf
WFP第30号「1手詰?コンクール追記3」:http://www.dokidoki.ne.jp/home2/takuji/WFP30.pdf
『将棋世界』2004年1月号付録「森信雄ワールドPart2」

前の記事
次の記事
スポンサーサイト

馬ノコの無駄合

今回は、馬ノコの無駄合とか復元型の無駄合とか呼ばれるタイプの無駄合をざっと解説していきます。
初出は、おそらく『象戯大矢数』の番外の作品ですが、ここではもっと単純化した図で済ませてしまいます。

馬ノコ
(※無駄合を認めても歩が余ります)

32馬、11玉、33馬に対して、
①22金or飛合は、同馬以下
②22歩合などは、12歩、21玉、32馬まで
で詰むので、21玉の一手です。

ここで43馬とすれば、32馬と比べて斜めに1つ馬が移動したことになります。
つまり、
43馬、11玉、44馬、21玉、54馬、11玉、55馬、21玉、
65馬、11玉、66馬、21玉、76馬11玉、77馬、21玉、
87馬(桂確保)、11玉、77馬、21玉、76馬、11玉、66馬、21玉、
65馬、11玉、55馬、21玉、54馬、11玉、44馬、21玉、
43馬、11玉、33馬(往復完了)、21玉
32銀成、12玉、24桂、同銀、22馬まで(歩余り)

このように、ノコギリのように馬を移動させる趣向なので、「馬ノコ」と呼ばれます。


が、

76馬の瞬間に、32歩と打ったらどうなるでしょうか?
32歩合
同馬の一手に、11玉と逃げて、33馬、21玉、43馬・・・
と、攻方は1歩増えて計2歩になったものの、元の局面に引き戻されてしまいました。
……76馬、32歩、同馬(計3歩)、11玉、
……76馬、32歩、同馬(計4歩)、11玉、
……(中略)……
……76馬、32歩、同馬(計18歩)、11玉、
……76馬、11玉(歩切れ)、77馬、21玉、87馬、11玉、
……33馬、21玉、32銀成、12玉、24桂、同銀、22馬まで(歩18枚余り)

「こういう歩合はしないでね(意訳)」としたのが、『象戯大矢数』の番外作品です[1]。
(追記:ちょっとウソかも。現在は歩合ありと見る人が多い)
それ以来、「これは無駄合だ」派と「いや、有効合だ」派が存在しています。
(有効合派は、このようなケースでは1歩でも獲得したら早詰になるように工夫をしています)

それはさておき、このタイプの無駄合は、
ある局面(A)で合駒をすると、攻方はその駒を持駒にした以外は
 その局面と変わらない局面(A')へ持ち込むことができる

という構造をしています(例題の場合、Aは76馬の局面にあたるでしょう)。
局面を元の形に戻すことから、復元型無駄合とも呼ばれる訳です。

※いろいろ呼称があると思いますが、ここでは馬ノコの無駄合と復元型無駄合を用います

この構造は、馬ノコが代表的ですが、別に龍ノコ(龍でノコギリをやる趣向)だって構いません。
ノコギリ趣向とは一切関係のないものでも、このような無駄合は現れます。



例えば、龍追い(龍で追い回す趣向)
龍追い
37飛成、58玉、48龍、67玉、78龍、57玉、68龍、47玉、
48龍、36玉、37龍、25玉、26龍、34玉、23龍、35玉、
24龍、36玉、26龍、47玉、27龍(局面A)、58玉、18龍、67玉、
78龍、57玉、58金まで

収束の雑さは置いておくとして、27龍のときに、37歩とするとどうなるでしょうか。
37歩
以下、
同龍、58玉、48龍、67玉、78龍、57玉、68龍、47玉、
48龍、36玉、37龍、25玉、26龍、34玉、23龍、35玉、
24龍、36玉、26龍、47玉、27龍(局面A')
となって、無事A'に持ち込めました。よって、この37歩合は無駄合と言う訳です。


このようなタイプの無駄合は、「無駄と言われれば無駄かもしれないけど無駄合ではないんじゃない?」感が半端じゃないかもしれませんが、長編作品だと稀に見られるのでひとまず覚えておくとよいと思います。



[1]『象戯大矢数』には解答が添えられていなかったらしいので作者の真意は不明ですが、

遠来名物古今無双
太矢数凡四百度及
敵歩一兵二兵莫用
事則是伝也
誥者知之


と馬ノコ作の上に書かれているらしいことを考えると、
「敵歩使わない」=「無駄合だ!」だったんじゃないか説の方をここでは採用しています。
※追記:解釈ミスな気がする

参考文献
詰将棋博物館「象戯大矢数」:http://park6.wakwak.com/~k-oohasi/shougi/
門脇芳雄編(1978)『続詰むや詰まざるや 古典詰将棋の系譜』平凡社
井島寛(1972)『象戯大矢数の研究』詰将棋パラダイス編集部
『詰将棋パラダイス』2010年11月号大学院解答
(龍追いで無駄合になるパターンは摩利支天氏作「STARSHIP TROOPER」(2010年8月)を参考にしました)


前の記事
次の記事

続きに2

再び、ほぼ無駄合とされる場合です。無駄感で言えば、90%以上になるでしょう。
例えばこんな図です。
1図
この図で、48歩としてみます。
同角と取ってしまうと、28玉と逃げられてしまいますが、
代わりに、同龍!で詰みです。

これは、Wikipediaの「詰手順の本質に変化を生じない」の一例と見ることができるでしょう。
実際のところ、このような場合はほぼ無駄合とされています(※)。



同じようにこの図でも、
2図
初手29香に対して、28歩と打ったときに
・同香ならば18玉と逃げられるが、
・代わりに、同飛で詰み
となっています。
これも上と同じように無駄合と判定されるでしょう(おそらく)。


前の記事でも述べたように、これも1手として超初心者に出題すると混乱が生じる恐れがあります(実話)。



後ろに手が続く場合は、こんな感じでしょうか。
3図
作意は、39香、26玉、36と、17玉、18飛まで5手詰です。

39香に対して、38歩(無駄合)は、同飛、26玉、36と、17玉、18飛まで7手歩余りで詰みます。
これも、「詰手順の本質に変化を生じない」の一例と考えることができるでしょう。
つまり、おおかたこのような合駒は無駄合とみなされるわけです(※)。

※このようなパターンにあてはまっているのに、
 「コレ有効合では?」
 「あぁ、有効合ですね。変長です」
 ということも度々あります。
 つまり、この時点でちょっと無駄感は低くなってきており、議論に値するかも?
(変長については、いつかやりたいのですが、しばらくはググって何とかしてください)



ここからは、無駄かどうか本格的に怪しい図面を取り上げていきます。

この図はどうでしょうか?
広義無駄合
作意は、39香、26玉、36と、17玉、18飛までの5手詰です。

しかし今回は、2手目38歩、同飛に対して、
47玉!
と逃げる手段が新たに出現します。

さてこの場合、「詰手順の本質に変化を生じない」と言えるのでしょうか?
・新たに変化が生じたのだから、変化している?
・玉方最長の順に変化が生じていないのだから、変化していない?
どちらでしょうか?
(※私の意見はたいてい的外れなのでここでは述べません)

この点は、無駄合@ウィキで主要な論点の1つとして挙げられています。
是非ご参照ください。


参考文献
『詰棋めいと』19号 p.86及び20号 pp.68-72
無駄合@ウィキ:http://www48.atwiki.jp/mudaai/pages/1.html
Wikipedia「詰将棋」:http://ja.wikipedia.org/wiki/%E8%A9%B0%E5%B0%86%E6%A3%8B
冬眠蛙の冬眠日記:http://sleepingfrog.air-nifty.com/diary/2010/02/post-9047.html
冬眠蛙の冬眠日記:http://sleepingfrog.air-nifty.com/diary/2010/03/post-d799.html

前の記事
次の記事

続きに

まずはほぼ100%無駄合とされるパターン
無駄合例
初手84角は
48歩!、同角、38玉
で38の空間に逃げられてしまいます。
この場合、1歩を犠牲に玉の脱出に成功していることから、無駄合と言われることはありません。

答えは、
93角!まで1手詰
今度48歩は同角で詰みです。38への脱出路が開く訳ではないので、
48合駒は無駄合と判定されることになります。

※当然ながら、84歩~57歩も同角成としておけば無駄なので無駄合です。


注意してほしいのは、将棋にある程度慣れた人なら、
これが93角までの1手詰であることをすんなり理解できる(と思う)のですが、
どビギナーで、駒の動きも怪しいレベルの人に1手詰だからといってこの問題を解かせると、
93角…48歩が効かず1手詰
84角…48歩が効き逃れ
の違いを理解できず、混乱させてしまうことになります。


たとえ1手詰であっても、ちょっと怪しい問題を出題するのはいけませんね
という話でした。

(「じゃあ、93角、(84歩、同角成、75歩、同馬…)、48歩、同角成(同馬)までの
  駒余り可詰将棋として出題するのはいいんじゃないか」という気にもなりますが、保留)


※ちなみに、学園祭で1手詰を作るというときなどに、「ちょっと変わった問題も入れよう」
 とか思うと、この記事のような状況になります(実話)。

前の記事
次の記事

はじめに

詰将棋における無駄合についてをざっくり雑に説明していきます。気が向いたら更新。

分かりやすい説明
Wikipedia「合駒」の「詰将棋における合駒」より引用
「単に取られるだけで最後まで持ち駒として残る合駒(無駄合いと呼ばれる)はしてはいけない」

同じく、「詰将棋」の「ルール」から引用
「取られるだけで詰手順の本質に変化を生じない玉方の合駒は「無駄合」といって手数に含めない。ただし合駒によって詰みを回避できる場合、または詰手順に変化を生じる場合は、無駄合いではない」

例えばこんなの。
いち
この局面で18歩や17歩や16歩や・・・12歩などは明らかに取られるだけで無駄だと分かります。
よって無駄合。


後ろに手順が続く場合にも、
結局無駄と言う例
83~38までどこに合駒をしても、結局は19玉、18金までで詰みです。合駒はまるで役立たずでした。
よって無駄合。



これで話が済めば楽なのですが、ここからが真の無駄合ワールドです。気が向いたら書きます。



参考文献
Wikipedia「合駒」:http://ja.wikipedia.org/wiki/%E5%90%88%E9%A7%92
Wikipedia「詰将棋」:http://ja.wikipedia.org/wiki/%E8%A9%B0%E5%B0%86%E6%A3%8B
冬眠蛙の冬眠日記:http://sleepingfrog.air-nifty.com/diary/2010/01/post-39cf.html
詰将棋パラダイス「詰将棋の基本ルール」:http://www005.upp.so-net.ne.jp/tsumepara/contents/2rule/rules.htm
(一番目の図面はここから引用しました)

次の記事
プロフィール

sogain

Author:sogain
使い方がよく分からん
私の立場については下の「立場」から
簡単な説明は「はじめに」から
まとめは「まとめ」から
とかやればいいんだろうか

最新記事
最新コメント
最新トラックバック
月別アーカイブ
カテゴリ
検索フォーム
RSSリンクの表示
リンク
ブロとも申請フォーム

この人とブロともになる

QRコード
QR
上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。